
1-4244-1513-06/07/$25.00 (c)2007 IEEE 1 of 5
Statement A: Approved for public release; Distribution is unlimited.

Design Patterns of the JTRS Infrastructure

Donald R. Stephens, Cinly Magsombol, and Chalena Jimenez
JPEO JTRS San Diego, CA

ABSTRACT

The concept of the Joint Tactical Radio System (JTRS)
infrastructure is to define a radio host environment for
the execution of waveforms and applications. Software
developers are guaranteed a specific set of real time
operating functions, distributed messaging through
Common Object Request Broker Architecture (CORBA),
and radio domain-specific interfaces such as Global
Positioning System (GPS), Ethernet, audio, etc. This
promotes reuse and portability of waveform components.
The hardware dependencies are isolated from the
applications by the Application Program Interfaces
(APIs) defined for radio devices.

Software design patterns have been developed by the
JTRS community to define a scaleable and extensible
infrastructure. Aggregation, least privilege, extension,
explicit enumeration, and deprecation enable the
infrastructure to support varying missions and form
factors. These design patterns permit the instantiation
of a radio infrastructure suitable for the platform
footprint and resources of a single-channel handheld
radio, yet also permit it to be scaleable and extensible to
the requirements of a multiple-channel wireless
networking gateway.

INTRODUCTION
The principle of the JTRS infrastructure is to provide

a host environment supported by all radio sets within the
JTRS product line [1]. Common interfaces and
minimum radio services are defined by the infrastructure
for all JTR Sets. This enables a JTRS waveform or
application developer to generate software products that
can execute upon any radio in the product line.

Definition of the JTRS infrastructure has been a
collaborative product of the JTRS Interface Control
Working Group (ICWG). The primary emphasis in
standardization has been upon the waveform-to-set
interfaces illustrated in Figure 1. Only the interfaces
between the waveform and the radio are standardized.
The internal interfaces and transport mechanisms of the
radio are defined as required by the radio provider. The
intent is to provide portability or reuse of the waveform
between radio platforms and not necessarily reuse of the
radio operating environment software.

Figure 2 illustrates the definition and deployment of
the JTRS infrastructure [2]. Regardless of the mission or
size of the JTRS radio, the services and interfaces are

supported across the product line. Portability and
compatibility for General Purpose Processors (GPP) are
obtained by compliance to the Software
Communications Architecture (SCA) [3] which includes
an AEP specifying a POSIX Real Time Operating
System (RTOS) subset and CORBA middleware.

W
av

ef
or

m
 A

pp
lic

at
io

n

JTR Set
Operating Environment (OE)

HMI
Service

System
Control

Modem
Device

Audio
Device

Modem
Hardware

Audio
Hardware

Standardized
JTR Set APIs

Operator
Control

Set-Specific
Interfaces

Figure 1 JTR Set and Waveform Interfaces

The JTRS infrastructure promotes portability of
FPGA and DSP-based software by the definition of the
Modem Hardware Abstraction Layer (MHAL). This
specification enables communication between software
components distributed on different non-CORBA
enabled processing elements.

The primary goals of the infrastructure are: a)
portability, b) scalability, c) extensibility, and d)
backward-compatibility. To achieve these goals, the
ICWG has implemented several design patterns and
strategies for the JTRS Infrastructure

Over 3.5M source lines of code have been generated
for the JTRS program and the definition of the JTRS
infrastructure maintains the viability and applicability of
this software for future radio deployment. The design
patterns of aggregation, least privilege, extension,
explicit enumeration, and deprecation are described
below.

 2 of 5
Statement A: Approved for public release; Distribution is unlimited.

Red-Side GPP

Waveform
Component

DSP and FPGA

Modem
Device

Component A Component B

SCA
Core Framework

RF
Amplifier

Cosite
Resource

Antenna
Resource

MHAL FPGA
Library

MHAL
Interface

Audio
Device

Serial IO
Device

Component1

Standardization of
Interfaces Promotes

Reuse and Portability

CoreFramework Reduces
JTRS Set-Specific Code –

Promotes Reuse

MHAL DSP
Library

Component2

Location
Device

MHAL Provides a Consistent
Waveform Host Environment
Across the JTRS Enterprise

Standardization of
Interfaces Allows

Hardware Module and
Code Reuse

Waveforms Have
Consistent Host

Environment
Across all JTRS

DSP AEP

GPP AEP

Application Environment
Profile (AEP) Provides

Operating System
Independence

Figure 2 Definition of the JTRS Infrastructure

Aggregation
The JTRS infrastructure is designed to support all

JTRS sets and missions without requiring the smaller
radios to provide unnecessary services and devices. The
design pattern illustrated in Figure 3 has an API that
consists of two separable interfaces. With the
aggregation design strategy, radio set developers are
permitted to overload provided ports by aggregating as
many interfaces as desired into a single provided port.
This strategy can reduce the number of CORBA servants
within the set which consequently reduces the memory
resources required by the implementation.

Figure 3 Interfaces are Aggregated for Components

 Actual port names for the components are not
specified in the APIs; only reference names are used for

documentation purposes. The actual port names in the
JTRS set are intended to be specified by the set provider.

In Figure 3, the location device is required to provide
two separate interfaces, deviceControl and
auxPositionData. The interfaces are not coupled
together, which either allows separation or unification,
depending upon the implementation of the radio set’s
operating environment.

The strategy is illustrated through Figure 4. In the
SCA, ports are defined as connection points between
software components. These connection points allow
components to be distributed anywhere within the radio.
The SCA Core Framework’s application factory
connects the two components by exchanging the
addresses of peer ports at runtime. Generally a port is
associated with a specific set of CORBA interfaces, but
the JTRS infrastructure permits either aggregation or
separation of the ports as shown in Figure 4.

Least Privilege
A related design pattern is illustrated in Figure 5. In

the example, the MailService API does not expose the
base SCA interfaces to a waveform component, or any
other unnecessary interfaces. The rationale is that it is
undesirable for a waveform to have the capability to start
or stop a radio set hardware component or service. Such
control could subsequently affect other waveforms or
radio channels.

 3 of 5
Statement A: Approved for public release; Distribution is unlimited.

Device User
(Waveform) Location::alert

LocationDeviceAlert_uses_port

Location::position

LocationDevicePosition_uses_port

Location::auxPositionData

LocationDeviceAuxPosition_provides_port

Location::deviceControl

LocationDeviceControl_provides_port

Discrete Port Example

Overloaded Port Example

Location
Device

Device User
(Waveform)

Location::position
Location::alert

LocationDevice_uses_port

Location::deviceControl
Location::auxPositionData

LocationDevice_provides_port

Location
Device

Figure 4 Aggregation of SCA Ports

Error! Objects cannot be created from editing field
codes.

Figure 5 Principle of Least Privilege for Interface Definition

Control of the JTR set by the waveform or
application should be limited to strictly those operations
needed for configuration and control of the waveform.
Because the base SCA interface is not available to the
waveform, it cannot invoke operations that could affect
the state of the JTR set or other waveforms. This
principle of least privilege – exposing only the essential
interfaces required by a client component is a guideline
for all JTRS APIs.

Extension
The extension design pattern is depicted in Figure 6.

The concept is to define a base API and optional
extensions or services that could be included in a radio
set as required by mission or application. As an
example, a service such as the MailService is defined in
Figure 6. It consists of a base interface which would be
provided by every JTR set that is required to provide the
service. In addition, the MailService API could be
extended for sets that required a POP3 interface for

retrieving email from a remote server. As shown in
Figure 6, this additional interface would be optional and
perhaps unnecessary on small form factor or hand-held
sets. For missions or sets that did require this feature,
the behavior and interfaces would be standardized for
the JTRS enterprise.

Figure 6 Base APIs can be Extended

Figure 7 lists the CORBA Interface Definition
Language (IDL) for the example’s base mail service
interface. Note that the IDL keyword, “module”, is used
to define the namespace “MailService”. As discussed
previously, interfaces such as MailBox, are later
aggregated inside the “MailService” namespace. To
invoke a method, it is necessary to use both the module
name and specific interface. As an example, to
determine whether the mailbox was empty,
MailService::MailBox::isEmpty() would be invoked.

module MailService{
 typedef unsigned short ExtEnum;
 typedef sequence<ExtEnum>
 ExtEnumSequence;

 const ExtEnum MAIL_BASE = 0;

 interface MailBox{
 Boolean isEmpty();
 void clearBox();
 unsigned short numberMessages();
 };
};

Figure 7 IDL for the Base Mail Service (mailBase.idl)

To minimize the processing and memory resource
requirements for a JTR Set, the JTRS Infrastructure

 4 of 5
Statement A: Approved for public release; Distribution is unlimited.

would not require every radio to implement the POP3
protocol. However, if the radio does need to support
POP3, then the JTRS standardized POP3 extension API
is implemented on the set. Example IDL is illustrated in
Figure 8 where a new interface, Pop3Box, is defined for
the additional capability.

 #include "mailBase.idl"
module MailService{
 const ExtEnum MAIL_POP = MAIL_BASE + 1;

 interface Pop3Box{
 long address();
 };

};

Figure 8 IDL for the Mail Service Extension

As with the base interface, the MailService

namespace is used to encapsulate the interface Pop3Box.
Since this is the same module name as the base interface
for the MailService, the IDL in Figure 8 aggregates the
Pop3Box interface with the base interface. Identical to
namespaces in C++, modules in IDL can be reopened.
This allows the IDL compiler to process Figure 7 first,
and later discover that Figure 8 provides additional code
for the same module. To obtain the POP3 address, the
method MailService::Pop3Box::address() would be
invoked.

The advantage of using aggregation instead of
inheritance for JTRS Standards is illustrated in Figure 9.
Fictitious development dates are assigned to the software
builds to provide a time reference. Waveform A is
developed using the base mail service interface and the
POP3 extension. Similarly in time, JTR Set 1 is
developed with the same set of APIs. Later in time, JTR
Set 2 is developed with an additional MailService
extension. However, Waveform B was developed with
only the IMAP mail protocol – the POP3 protocol was
not needed in its implementation.

The compatibility matrix at the bottom of Figure 9
illustrates that Waveform A does not need to be
refactored to execute on JTR Set 2. Aggregation allows
software generated with the JTR Standards APIs to be
backward compatible with previous implementations.
As would be expected, in order for JTR Set 1 to support
Waveform B, new mail service protocol capability must
first be added to the set. Then it could also host the new
waveform.

JTR Set 1

Waveform A

October 06

December 06

JTR Set 1 JTR Set 2
Waveform A Compatible Compatible
Waveform B Not Supported Compatible

Base
MailService

POP3
Extension

Base
MailService

POP3
Extension

Waveform B
March 08

June 08

JTR Set 2
Base

MailService

POP3
Extension

IMAP
Extension

Base
MailService

IMAP
Extension

Figure 9 Benefit of Interface Aggregation

Explicit Enumeration
During the development of the JTRS Standards APIs,

enumerations in APIs were identified as particularly
non-extensible. An example of an enumeration is
illustrated in Figure 10. If it is desired to add a Local
Mail Transfer Protocol (LMTP) algorithm to this list, the
interface must be redefined which subsequently requires
all of the existing software to be updated whenever new
capability is added such as the new protocol.

 enum MailTypes{
 MAIL_BASE,
 MAIL_POP,
 MAIL_IMAP

};

Figure 10 Example Implicit Enumeration

To mitigate the difficulty of extending enumerations,

the design strategy adopted by JTRS Standards is
illustrated in Figure 11. Instead of directly using
enumerations, the constant MAIL_POP is defined only
in its extension. This avoids the difficulty of continually
updating the code base as new capability is added to the
APIs.

 5 of 5
Statement A: Approved for public release; Distribution is unlimited.

#include "mailBase.idl"
module MailService{
 const ExtEnum MAIL_POP = MAIL_BASE + 1;

};

Figure 11 Explicit Enumeration Through Constants

Deprecation
During JTRS maturation and fielding, APIs must

evolve or become obsolete. Deprecation of methods and
interfaces has been selected by the JTRS ICWG to
gracefully accommodate obsolescence. Figure 12
illustrates an example interface for an audioConsole.
Originally adjust() was a method to control the volume
of the audio stream. Small form factor radio developers
objected to an additional function call because volume()
could perform the same functionality. In this example,
the dilemma for the JTRS enterprise would be that
software already deployed in radios required the adjust()
method. To avoid an immediate refactoring of all the
code in the JTRS product line, the adjust() method
would be deprecated as illustrated in Figure 12. This
informs waveform developers generating new code that
the adjust() method should not be used for future
development. JTR set developers are similarly alerted
that older waveforms ported to the set may require that
method to be supported by the JTR set.

Figure 12 Deprecation of APIs

SUMMARY

The JTRS program has defined a radio infrastructure
tailored for DoD communications. The JTRS
infrastructure specifies not only minimum capability and
services available for any JTRS radio, but also specifies
the interfaces and services for enhanced feature sets.
The scalability and extensibility of the infrastructure is
achieved through the application of design patterns.

Additionally the design patterns restrict the scope of
control for waveforms and applications, limiting their
ability to affect other waveforms and applications
executing upon the radio set. The design patterns also
allow for future evolution and refinement of radio
services and interfaces. Backward compatibility with
previous waveforms and applications is provided
through the definition of the design patterns.

References

[1] Stephens, D.R., Salisbury, B., Richardson, K., “JTRS
Infrastructure Architecture and Standards”, MILCOM
2006.

[2] Schivonne, L., North, R.C., Browne, N., Joint
“Tactical Radio System – Bringing the GIG to the
Tactical Edge”, MILCOM 2006.

[3] Hayes, N., “The JTRS SCA specification... the past,
the present, and the future...”, MILCOM 2005.

